- import datetime
 - import json
 - import logging
 - import re
 - import threading
 - import time
 - import uuid
 - from typing import Optional, List, cast
 - 
 - from flask import current_app, Flask
 - from flask_login import current_user
 - from langchain.schema import Document
 - from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
 - from sqlalchemy.orm.exc import ObjectDeletedError
 - 
 - from core.data_loader.file_extractor import FileExtractor
 - from core.data_loader.loader.notion import NotionLoader
 - from core.docstore.dataset_docstore import DatesetDocumentStore
 - from core.generator.llm_generator import LLMGenerator
 - from core.index.index import IndexBuilder
 - from core.model_providers.error import ProviderTokenNotInitError
 - from core.model_providers.model_factory import ModelFactory
 - from core.model_providers.models.entity.message import MessageType
 - from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from extensions.ext_storage import storage
 - from libs import helper
 - from models.dataset import Document as DatasetDocument
 - from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
 - from models.model import UploadFile
 - from models.source import DataSourceBinding
 - 
 - 
 - class IndexingRunner:
 - 
 -     def __init__(self):
 -         self.storage = storage
 - 
 -     def run(self, dataset_documents: List[DatasetDocument]):
 -         """Run the indexing process."""
 -         for dataset_document in dataset_documents:
 -             try:
 -                 # get dataset
 -                 dataset = Dataset.query.filter_by(
 -                     id=dataset_document.dataset_id
 -                 ).first()
 - 
 -                 if not dataset:
 -                     raise ValueError("no dataset found")
 - 
 -                 # get the process rule
 -                 processing_rule = db.session.query(DatasetProcessRule). \
 -                     filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 -                     first()
 - 
 -                 # load file
 -                 text_docs = self._load_data(dataset_document)
 - 
 -                 # get splitter
 -                 splitter = self._get_splitter(processing_rule)
 - 
 -                 # split to documents
 -                 documents = self._step_split(
 -                     text_docs=text_docs,
 -                     splitter=splitter,
 -                     dataset=dataset,
 -                     dataset_document=dataset_document,
 -                     processing_rule=processing_rule
 -                 )
 -                 self._build_index(
 -                     dataset=dataset,
 -                     dataset_document=dataset_document,
 -                     documents=documents
 -                 )
 -             except DocumentIsPausedException:
 -                 raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -             except ProviderTokenNotInitError as e:
 -                 dataset_document.indexing_status = 'error'
 -                 dataset_document.error = str(e.description)
 -                 dataset_document.stopped_at = datetime.datetime.utcnow()
 -                 db.session.commit()
 -             except ObjectDeletedError:
 -                 logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
 -             except Exception as e:
 -                 logging.exception("consume document failed")
 -                 dataset_document.indexing_status = 'error'
 -                 dataset_document.error = str(e)
 -                 dataset_document.stopped_at = datetime.datetime.utcnow()
 -                 db.session.commit()
 - 
 -     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 -         """Run the indexing process when the index_status is splitting."""
 -         try:
 -             # get dataset
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_document.dataset_id
 -             ).first()
 - 
 -             if not dataset:
 -                 raise ValueError("no dataset found")
 - 
 -             # get exist document_segment list and delete
 -             document_segments = DocumentSegment.query.filter_by(
 -                 dataset_id=dataset.id,
 -                 document_id=dataset_document.id
 -             ).all()
 - 
 -             db.session.delete(document_segments)
 -             db.session.commit()
 - 
 -             # load file
 -             text_docs = self._load_data(dataset_document)
 - 
 -             # get the process rule
 -             processing_rule = db.session.query(DatasetProcessRule). \
 -                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 -                 first()
 - 
 -             # get splitter
 -             splitter = self._get_splitter(processing_rule)
 - 
 -             # split to documents
 -             documents = self._step_split(
 -                 text_docs=text_docs,
 -                 splitter=splitter,
 -                 dataset=dataset,
 -                 dataset_document=dataset_document,
 -                 processing_rule=processing_rule
 -             )
 - 
 -             # build index
 -             self._build_index(
 -                 dataset=dataset,
 -                 dataset_document=dataset_document,
 -                 documents=documents
 -             )
 -         except DocumentIsPausedException:
 -             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -         except ProviderTokenNotInitError as e:
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e.description)
 -             dataset_document.stopped_at = datetime.datetime.utcnow()
 -             db.session.commit()
 -         except Exception as e:
 -             logging.exception("consume document failed")
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e)
 -             dataset_document.stopped_at = datetime.datetime.utcnow()
 -             db.session.commit()
 - 
 -     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 -         """Run the indexing process when the index_status is indexing."""
 -         try:
 -             # get dataset
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_document.dataset_id
 -             ).first()
 - 
 -             if not dataset:
 -                 raise ValueError("no dataset found")
 - 
 -             # get exist document_segment list and delete
 -             document_segments = DocumentSegment.query.filter_by(
 -                 dataset_id=dataset.id,
 -                 document_id=dataset_document.id
 -             ).all()
 - 
 -             documents = []
 -             if document_segments:
 -                 for document_segment in document_segments:
 -                     # transform segment to node
 -                     if document_segment.status != "completed":
 -                         document = Document(
 -                             page_content=document_segment.content,
 -                             metadata={
 -                                 "doc_id": document_segment.index_node_id,
 -                                 "doc_hash": document_segment.index_node_hash,
 -                                 "document_id": document_segment.document_id,
 -                                 "dataset_id": document_segment.dataset_id,
 -                             }
 -                         )
 - 
 -                         documents.append(document)
 - 
 -             # build index
 -             self._build_index(
 -                 dataset=dataset,
 -                 dataset_document=dataset_document,
 -                 documents=documents
 -             )
 -         except DocumentIsPausedException:
 -             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -         except ProviderTokenNotInitError as e:
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e.description)
 -             dataset_document.stopped_at = datetime.datetime.utcnow()
 -             db.session.commit()
 -         except Exception as e:
 -             logging.exception("consume document failed")
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e)
 -             dataset_document.stopped_at = datetime.datetime.utcnow()
 -             db.session.commit()
 - 
 -     def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
 -                                doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 -                                indexing_technique: str = 'economy') -> dict:
 -         """
 -         Estimate the indexing for the document.
 -         """
 -         embedding_model = None
 -         if dataset_id:
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_id
 -             ).first()
 -             if not dataset:
 -                 raise ValueError('Dataset not found.')
 -             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 -                 embedding_model = ModelFactory.get_embedding_model(
 -                     tenant_id=dataset.tenant_id,
 -                     model_provider_name=dataset.embedding_model_provider,
 -                     model_name=dataset.embedding_model
 -                 )
 -         else:
 -             if indexing_technique == 'high_quality':
 -                 embedding_model = ModelFactory.get_embedding_model(
 -                     tenant_id=tenant_id
 -                 )
 -         tokens = 0
 -         preview_texts = []
 -         total_segments = 0
 -         for file_detail in file_details:
 -             # load data from file
 -             text_docs = FileExtractor.load(file_detail)
 - 
 -             processing_rule = DatasetProcessRule(
 -                 mode=tmp_processing_rule["mode"],
 -                 rules=json.dumps(tmp_processing_rule["rules"])
 -             )
 - 
 -             # get splitter
 -             splitter = self._get_splitter(processing_rule)
 - 
 -             # split to documents
 -             documents = self._split_to_documents_for_estimate(
 -                 text_docs=text_docs,
 -                 splitter=splitter,
 -                 processing_rule=processing_rule
 -             )
 - 
 -             total_segments += len(documents)
 - 
 -             for document in documents:
 -                 if len(preview_texts) < 5:
 -                     preview_texts.append(document.page_content)
 -                 if indexing_technique == 'high_quality' or embedding_model:
 -                     tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
 - 
 -         if doc_form and doc_form == 'qa_model':
 -             text_generation_model = ModelFactory.get_text_generation_model(
 -                 tenant_id=tenant_id
 -             )
 -             if len(preview_texts) > 0:
 -                 # qa model document
 -                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
 -                                                              doc_language)
 -                 document_qa_list = self.format_split_text(response)
 -                 return {
 -                     "total_segments": total_segments * 20,
 -                     "tokens": total_segments * 2000,
 -                     "total_price": '{:f}'.format(
 -                         text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
 -                     "currency": embedding_model.get_currency(),
 -                     "qa_preview": document_qa_list,
 -                     "preview": preview_texts
 -                 }
 -         return {
 -             "total_segments": total_segments,
 -             "tokens": tokens,
 -             "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
 -             "currency": embedding_model.get_currency() if embedding_model else 'USD',
 -             "preview": preview_texts
 -         }
 - 
 -     def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
 -                                  doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 -                                  indexing_technique: str = 'economy') -> dict:
 -         """
 -         Estimate the indexing for the document.
 -         """
 -         embedding_model = None
 -         if dataset_id:
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_id
 -             ).first()
 -             if not dataset:
 -                 raise ValueError('Dataset not found.')
 -             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 -                 embedding_model = ModelFactory.get_embedding_model(
 -                     tenant_id=dataset.tenant_id,
 -                     model_provider_name=dataset.embedding_model_provider,
 -                     model_name=dataset.embedding_model
 -                 )
 -         else:
 -             if indexing_technique == 'high_quality':
 -                 embedding_model = ModelFactory.get_embedding_model(
 -                     tenant_id=tenant_id
 -                 )
 -         # load data from notion
 -         tokens = 0
 -         preview_texts = []
 -         total_segments = 0
 -         for notion_info in notion_info_list:
 -             workspace_id = notion_info['workspace_id']
 -             data_source_binding = DataSourceBinding.query.filter(
 -                 db.and_(
 -                     DataSourceBinding.tenant_id == current_user.current_tenant_id,
 -                     DataSourceBinding.provider == 'notion',
 -                     DataSourceBinding.disabled == False,
 -                     DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                 )
 -             ).first()
 -             if not data_source_binding:
 -                 raise ValueError('Data source binding not found.')
 - 
 -             for page in notion_info['pages']:
 -                 loader = NotionLoader(
 -                     notion_access_token=data_source_binding.access_token,
 -                     notion_workspace_id=workspace_id,
 -                     notion_obj_id=page['page_id'],
 -                     notion_page_type=page['type']
 -                 )
 -                 documents = loader.load()
 - 
 -                 processing_rule = DatasetProcessRule(
 -                     mode=tmp_processing_rule["mode"],
 -                     rules=json.dumps(tmp_processing_rule["rules"])
 -                 )
 - 
 -                 # get splitter
 -                 splitter = self._get_splitter(processing_rule)
 - 
 -                 # split to documents
 -                 documents = self._split_to_documents_for_estimate(
 -                     text_docs=documents,
 -                     splitter=splitter,
 -                     processing_rule=processing_rule
 -                 )
 -                 total_segments += len(documents)
 -                 for document in documents:
 -                     if len(preview_texts) < 5:
 -                         preview_texts.append(document.page_content)
 -                     if indexing_technique == 'high_quality' or embedding_model:
 -                         tokens += embedding_model.get_num_tokens(document.page_content)
 - 
 -         if doc_form and doc_form == 'qa_model':
 -             text_generation_model = ModelFactory.get_text_generation_model(
 -                 tenant_id=tenant_id
 -             )
 -             if len(preview_texts) > 0:
 -                 # qa model document
 -                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
 -                                                              doc_language)
 -                 document_qa_list = self.format_split_text(response)
 -                 return {
 -                     "total_segments": total_segments * 20,
 -                     "tokens": total_segments * 2000,
 -                     "total_price": '{:f}'.format(
 -                         text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
 -                     "currency": embedding_model.get_currency(),
 -                     "qa_preview": document_qa_list,
 -                     "preview": preview_texts
 -                 }
 -         return {
 -             "total_segments": total_segments,
 -             "tokens": tokens,
 -             "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
 -             "currency": embedding_model.get_currency() if embedding_model else 'USD',
 -             "preview": preview_texts
 -         }
 - 
 -     def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
 -         # load file
 -         if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
 -             return []
 - 
 -         data_source_info = dataset_document.data_source_info_dict
 -         text_docs = []
 -         if dataset_document.data_source_type == 'upload_file':
 -             if not data_source_info or 'upload_file_id' not in data_source_info:
 -                 raise ValueError("no upload file found")
 - 
 -             file_detail = db.session.query(UploadFile). \
 -                 filter(UploadFile.id == data_source_info['upload_file_id']). \
 -                 one_or_none()
 - 
 -             if file_detail:
 -                 text_docs = FileExtractor.load(file_detail, is_automatic=False)
 -         elif dataset_document.data_source_type == 'notion_import':
 -             loader = NotionLoader.from_document(dataset_document)
 -             text_docs = loader.load()
 - 
 -         # update document status to splitting
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="splitting",
 -             extra_update_params={
 -                 DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
 -                 DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
 -             }
 -         )
 - 
 -         # replace doc id to document model id
 -         text_docs = cast(List[Document], text_docs)
 -         for text_doc in text_docs:
 -             # remove invalid symbol
 -             text_doc.page_content = self.filter_string(text_doc.page_content)
 -             text_doc.metadata['document_id'] = dataset_document.id
 -             text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 - 
 -         return text_docs
 - 
 -     def filter_string(self, text):
 -         text = re.sub(r'<\|', '<', text)
 -         text = re.sub(r'\|>', '>', text)
 -         text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
 -         return text
 - 
 -     def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
 -         """
 -         Get the NodeParser object according to the processing rule.
 -         """
 -         if processing_rule.mode == "custom":
 -             # The user-defined segmentation rule
 -             rules = json.loads(processing_rule.rules)
 -             segmentation = rules["segmentation"]
 -             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 -                 raise ValueError("Custom segment length should be between 50 and 1000.")
 - 
 -             separator = segmentation["separator"]
 -             if separator:
 -                 separator = separator.replace('\\n', '\n')
 - 
 -             character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
 -                 chunk_size=segmentation["max_tokens"],
 -                 chunk_overlap=0,
 -                 fixed_separator=separator,
 -                 separators=["\n\n", "。", ".", " ", ""]
 -             )
 -         else:
 -             # Automatic segmentation
 -             character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
 -                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 -                 chunk_overlap=0,
 -                 separators=["\n\n", "。", ".", " ", ""]
 -             )
 - 
 -         return character_splitter
 - 
 -     def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
 -                     dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 -             -> List[Document]:
 -         """
 -         Split the text documents into documents and save them to the document segment.
 -         """
 -         documents = self._split_to_documents(
 -             text_docs=text_docs,
 -             splitter=splitter,
 -             processing_rule=processing_rule,
 -             tenant_id=dataset.tenant_id,
 -             document_form=dataset_document.doc_form,
 -             document_language=dataset_document.doc_language
 -         )
 - 
 -         # save node to document segment
 -         doc_store = DatesetDocumentStore(
 -             dataset=dataset,
 -             user_id=dataset_document.created_by,
 -             document_id=dataset_document.id
 -         )
 - 
 -         # add document segments
 -         doc_store.add_documents(documents)
 - 
 -         # update document status to indexing
 -         cur_time = datetime.datetime.utcnow()
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="indexing",
 -             extra_update_params={
 -                 DatasetDocument.cleaning_completed_at: cur_time,
 -                 DatasetDocument.splitting_completed_at: cur_time,
 -             }
 -         )
 - 
 -         # update segment status to indexing
 -         self._update_segments_by_document(
 -             dataset_document_id=dataset_document.id,
 -             update_params={
 -                 DocumentSegment.status: "indexing",
 -                 DocumentSegment.indexing_at: datetime.datetime.utcnow()
 -             }
 -         )
 - 
 -         return documents
 - 
 -     def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
 -                             processing_rule: DatasetProcessRule, tenant_id: str,
 -                             document_form: str, document_language: str) -> List[Document]:
 -         """
 -         Split the text documents into nodes.
 -         """
 -         all_documents = []
 -         all_qa_documents = []
 -         for text_doc in text_docs:
 -             # document clean
 -             document_text = self._document_clean(text_doc.page_content, processing_rule)
 -             text_doc.page_content = document_text
 - 
 -             # parse document to nodes
 -             documents = splitter.split_documents([text_doc])
 -             split_documents = []
 -             for document_node in documents:
 - 
 -                 if document_node.page_content.strip():
 -                     doc_id = str(uuid.uuid4())
 -                     hash = helper.generate_text_hash(document_node.page_content)
 -                     document_node.metadata['doc_id'] = doc_id
 -                     document_node.metadata['doc_hash'] = hash
 -                     split_documents.append(document_node)
 -             all_documents.extend(split_documents)
 -         # processing qa document
 -         if document_form == 'qa_model':
 -             for i in range(0, len(all_documents), 10):
 -                 threads = []
 -                 sub_documents = all_documents[i:i + 10]
 -                 for doc in sub_documents:
 -                     document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
 -                         'flask_app': current_app._get_current_object(),
 -                         'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
 -                         'document_language': document_language})
 -                     threads.append(document_format_thread)
 -                     document_format_thread.start()
 -                 for thread in threads:
 -                     thread.join()
 -             return all_qa_documents
 -         return all_documents
 - 
 -     def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 -         format_documents = []
 -         if document_node.page_content is None or not document_node.page_content.strip():
 -             return
 -         with flask_app.app_context():
 -             try:
 -                 # qa model document
 -                 response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 -                 document_qa_list = self.format_split_text(response)
 -                 qa_documents = []
 -                 for result in document_qa_list:
 -                     qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
 -                     doc_id = str(uuid.uuid4())
 -                     hash = helper.generate_text_hash(result['question'])
 -                     qa_document.metadata['answer'] = result['answer']
 -                     qa_document.metadata['doc_id'] = doc_id
 -                     qa_document.metadata['doc_hash'] = hash
 -                     qa_documents.append(qa_document)
 -                 format_documents.extend(qa_documents)
 -             except Exception as e:
 -                 logging.exception(e)
 - 
 -             all_qa_documents.extend(format_documents)
 - 
 -     def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
 -                                          processing_rule: DatasetProcessRule) -> List[Document]:
 -         """
 -         Split the text documents into nodes.
 -         """
 -         all_documents = []
 -         for text_doc in text_docs:
 -             # document clean
 -             document_text = self._document_clean(text_doc.page_content, processing_rule)
 -             text_doc.page_content = document_text
 - 
 -             # parse document to nodes
 -             documents = splitter.split_documents([text_doc])
 - 
 -             split_documents = []
 -             for document in documents:
 -                 if document.page_content is None or not document.page_content.strip():
 -                     continue
 -                 doc_id = str(uuid.uuid4())
 -                 hash = helper.generate_text_hash(document.page_content)
 - 
 -                 document.metadata['doc_id'] = doc_id
 -                 document.metadata['doc_hash'] = hash
 - 
 -                 split_documents.append(document)
 - 
 -             all_documents.extend(split_documents)
 - 
 -         return all_documents
 - 
 -     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 -         """
 -         Clean the document text according to the processing rules.
 -         """
 -         if processing_rule.mode == "automatic":
 -             rules = DatasetProcessRule.AUTOMATIC_RULES
 -         else:
 -             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 - 
 -         if 'pre_processing_rules' in rules:
 -             pre_processing_rules = rules["pre_processing_rules"]
 -             for pre_processing_rule in pre_processing_rules:
 -                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 -                     # Remove extra spaces
 -                     pattern = r'\n{3,}'
 -                     text = re.sub(pattern, '\n\n', text)
 -                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 -                     text = re.sub(pattern, ' ', text)
 -                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 -                     # Remove email
 -                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 -                     text = re.sub(pattern, '', text)
 - 
 -                     # Remove URL
 -                     pattern = r'https?://[^\s]+'
 -                     text = re.sub(pattern, '', text)
 - 
 -         return text
 - 
 -     def format_split_text(self, text):
 -         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
 -         matches = re.findall(regex, text, re.MULTILINE)
 - 
 -         return [
 -             {
 -                 "question": q,
 -                 "answer": re.sub(r"\n\s*", "\n", a.strip())
 -             }
 -             for q, a in matches if q and a
 -         ]
 - 
 -     def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
 -         """
 -         Build the index for the document.
 -         """
 -         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 -         keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
 -         embedding_model = None
 -         if dataset.indexing_technique == 'high_quality':
 -             embedding_model = ModelFactory.get_embedding_model(
 -                 tenant_id=dataset.tenant_id,
 -                 model_provider_name=dataset.embedding_model_provider,
 -                 model_name=dataset.embedding_model
 -             )
 - 
 -         # chunk nodes by chunk size
 -         indexing_start_at = time.perf_counter()
 -         tokens = 0
 -         chunk_size = 100
 -         for i in range(0, len(documents), chunk_size):
 -             # check document is paused
 -             self._check_document_paused_status(dataset_document.id)
 -             chunk_documents = documents[i:i + chunk_size]
 -             if dataset.indexing_technique == 'high_quality' or embedding_model:
 -                 tokens += sum(
 -                     embedding_model.get_num_tokens(document.page_content)
 -                     for document in chunk_documents
 -                 )
 - 
 -             # save vector index
 -             if vector_index:
 -                 vector_index.add_texts(chunk_documents)
 - 
 -             # save keyword index
 -             keyword_table_index.add_texts(chunk_documents)
 - 
 -             document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 -             db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.document_id == dataset_document.id,
 -                 DocumentSegment.index_node_id.in_(document_ids),
 -                 DocumentSegment.status == "indexing"
 -             ).update({
 -                 DocumentSegment.status: "completed",
 -                 DocumentSegment.enabled: True,
 -                 DocumentSegment.completed_at: datetime.datetime.utcnow()
 -             })
 - 
 -             db.session.commit()
 - 
 -         indexing_end_at = time.perf_counter()
 - 
 -         # update document status to completed
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="completed",
 -             extra_update_params={
 -                 DatasetDocument.tokens: tokens,
 -                 DatasetDocument.completed_at: datetime.datetime.utcnow(),
 -                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 -             }
 -         )
 - 
 -     def _check_document_paused_status(self, document_id: str):
 -         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 -         result = redis_client.get(indexing_cache_key)
 -         if result:
 -             raise DocumentIsPausedException()
 - 
 -     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 -                                       extra_update_params: Optional[dict] = None) -> None:
 -         """
 -         Update the document indexing status.
 -         """
 -         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 -         if count > 0:
 -             raise DocumentIsPausedException()
 -         document = DatasetDocument.query.filter_by(id=document_id).first()
 -         if not document:
 -             raise DocumentIsDeletedPausedException()
 - 
 -         update_params = {
 -             DatasetDocument.indexing_status: after_indexing_status
 -         }
 - 
 -         if extra_update_params:
 -             update_params.update(extra_update_params)
 - 
 -         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 -         db.session.commit()
 - 
 -     def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 -         """
 -         Update the document segment by document id.
 -         """
 -         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 -         db.session.commit()
 - 
 -     def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
 -         """
 -         Batch add segments index processing
 -         """
 -         documents = []
 -         for segment in segments:
 -             document = Document(
 -                 page_content=segment.content,
 -                 metadata={
 -                     "doc_id": segment.index_node_id,
 -                     "doc_hash": segment.index_node_hash,
 -                     "document_id": segment.document_id,
 -                     "dataset_id": segment.dataset_id,
 -                 }
 -             )
 -             documents.append(document)
 -         # save vector index
 -         index = IndexBuilder.get_index(dataset, 'high_quality')
 -         if index:
 -             index.add_texts(documents, duplicate_check=True)
 - 
 -         # save keyword index
 -         index = IndexBuilder.get_index(dataset, 'economy')
 -         if index:
 -             index.add_texts(documents)
 - 
 - 
 - class DocumentIsPausedException(Exception):
 -     pass
 - 
 - 
 - class DocumentIsDeletedPausedException(Exception):
 -     pass
 
 
  |