- from flask import request
 - from flask_login import current_user  # type: ignore
 - from flask_restful import marshal, reqparse  # type: ignore
 - from werkzeug.exceptions import NotFound
 - 
 - from controllers.service_api import api
 - from controllers.service_api.app.error import ProviderNotInitializeError
 - from controllers.service_api.wraps import (
 -     DatasetApiResource,
 -     cloud_edition_billing_knowledge_limit_check,
 -     cloud_edition_billing_resource_check,
 - )
 - from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from extensions.ext_database import db
 - from fields.segment_fields import child_chunk_fields, segment_fields
 - from models.dataset import Dataset
 - from services.dataset_service import DatasetService, DocumentService, SegmentService
 - from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
 - from services.errors.chunk import (
 -     ChildChunkDeleteIndexError,
 -     ChildChunkIndexingError,
 - )
 - from services.errors.chunk import (
 -     ChildChunkDeleteIndexError as ChildChunkDeleteIndexServiceError,
 - )
 - from services.errors.chunk import (
 -     ChildChunkIndexingError as ChildChunkIndexingServiceError,
 - )
 - 
 - 
 - class SegmentApi(DatasetApiResource):
 -     """Resource for segments."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id):
 -         """Create single segment."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         if document.indexing_status != "completed":
 -             raise NotFound("Document is not completed.")
 -         if not document.enabled:
 -             raise NotFound("Document is disabled.")
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 -         if args["segments"] is not None:
 -             for args_item in args["segments"]:
 -                 SegmentService.segment_create_args_validate(args_item, document)
 -             segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
 -             return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
 -         else:
 -             return {"error": "Segments is required"}, 400
 - 
 -     def get(self, tenant_id, dataset_id, document_id):
 -         """Get segments."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         page = request.args.get("page", default=1, type=int)
 -         limit = request.args.get("limit", default=20, type=int)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 - 
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("status", type=str, action="append", default=[], location="args")
 -         parser.add_argument("keyword", type=str, default=None, location="args")
 -         args = parser.parse_args()
 - 
 -         segments, total = SegmentService.get_segments(
 -             document_id=document_id,
 -             tenant_id=current_user.current_tenant_id,
 -             status_list=args["status"],
 -             keyword=args["keyword"],
 -             page=page,
 -             limit=limit,
 -         )
 - 
 -         response = {
 -             "data": marshal(segments, segment_fields),
 -             "doc_form": document.doc_form,
 -             "total": total,
 -             "has_more": len(segments) == limit,
 -             "limit": limit,
 -             "page": page,
 -         }
 - 
 -         return response, 200
 - 
 - 
 - class DatasetSegmentApi(DatasetApiResource):
 -     def delete(self, tenant_id, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check segment
 -         segment_id = str(segment_id)
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 -         SegmentService.delete_segment(segment, document, dataset)
 -         return {"result": "success"}, 200
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         if dataset.indexing_technique == "high_quality":
 -             # check embedding model setting
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -             # check segment
 -         segment_id = str(segment_id)
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 - 
 -         updated_segment = SegmentService.update_segment(
 -             SegmentUpdateArgs(**args["segment"]), segment, document, dataset
 -         )
 -         return {"data": marshal(updated_segment, segment_fields), "doc_form": document.doc_form}, 200
 - 
 - 
 - class ChildChunkApi(DatasetApiResource):
 -     """Resource for child chunks."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id, segment_id):
 -         """Create child chunk."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         # check segment
 -         segment_id = str(segment_id)
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 - 
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("content", type=str, required=True, nullable=False, location="json")
 -         args = parser.parse_args()
 - 
 -         try:
 -             child_chunk = SegmentService.create_child_chunk(args.get("content"), segment, document, dataset)
 -         except ChildChunkIndexingServiceError as e:
 -             raise ChildChunkIndexingError(str(e))
 - 
 -         return {"data": marshal(child_chunk, child_chunk_fields)}, 200
 - 
 -     def get(self, tenant_id, dataset_id, document_id, segment_id):
 -         """Get child chunks."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         # check segment
 -         segment_id = str(segment_id)
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("limit", type=int, default=20, location="args")
 -         parser.add_argument("keyword", type=str, default=None, location="args")
 -         parser.add_argument("page", type=int, default=1, location="args")
 -         args = parser.parse_args()
 - 
 -         page = args["page"]
 -         limit = min(args["limit"], 100)
 -         keyword = args["keyword"]
 - 
 -         child_chunks = SegmentService.get_child_chunks(segment_id, document_id, dataset_id, page, limit, keyword)
 - 
 -         return {
 -             "data": marshal(child_chunks.items, child_chunk_fields),
 -             "total": child_chunks.total,
 -             "total_pages": child_chunks.pages,
 -             "page": page,
 -             "limit": limit,
 -         }, 200
 - 
 - 
 - class DatasetChildChunkApi(DatasetApiResource):
 -     """Resource for updating child chunks."""
 - 
 -     @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
 -     def delete(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
 -         """Delete child chunk."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         # check segment
 -         segment_id = str(segment_id)
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         # check child chunk
 -         child_chunk_id = str(child_chunk_id)
 -         child_chunk = SegmentService.get_child_chunk_by_id(
 -             child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
 -         )
 -         if not child_chunk:
 -             raise NotFound("Child chunk not found.")
 - 
 -         try:
 -             SegmentService.delete_child_chunk(child_chunk, dataset)
 -         except ChildChunkDeleteIndexServiceError as e:
 -             raise ChildChunkDeleteIndexError(str(e))
 - 
 -         return {"result": "success"}, 200
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
 -     def patch(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
 -         """Update child chunk."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         # get document
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         # get segment
 -         segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         # get child chunk
 -         child_chunk = SegmentService.get_child_chunk_by_id(
 -             child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
 -         )
 -         if not child_chunk:
 -             raise NotFound("Child chunk not found.")
 - 
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("content", type=str, required=True, nullable=False, location="json")
 -         args = parser.parse_args()
 - 
 -         try:
 -             child_chunk = SegmentService.update_child_chunk(
 -                 args.get("content"), child_chunk, segment, document, dataset
 -             )
 -         except ChildChunkIndexingServiceError as e:
 -             raise ChildChunkIndexingError(str(e))
 - 
 -         return {"data": marshal(child_chunk, child_chunk_fields)}, 200
 - 
 - 
 - api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
 - api.add_resource(
 -     DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
 - )
 - api.add_resource(
 -     ChildChunkApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks"
 - )
 - api.add_resource(
 -     DatasetChildChunkApi,
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks/<uuid:child_chunk_id>",
 - )
 
 
  |