Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

deal_dataset_vector_index_task.py 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. import logging
  2. import time
  3. from typing import Literal
  4. import click
  5. from celery import shared_task
  6. from core.rag.index_processor.constant.index_type import IndexType
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from core.rag.models.document import ChildDocument, Document
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset, DocumentSegment
  11. from models.dataset import Document as DatasetDocument
  12. logger = logging.getLogger(__name__)
  13. @shared_task(queue="dataset")
  14. def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "add", "update"]):
  15. """
  16. Async deal dataset from index
  17. :param dataset_id: dataset_id
  18. :param action: action
  19. Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
  20. """
  21. logger.info(click.style(f"Start deal dataset vector index: {dataset_id}", fg="green"))
  22. start_at = time.perf_counter()
  23. try:
  24. dataset = db.session.query(Dataset).filter_by(id=dataset_id).first()
  25. if not dataset:
  26. raise Exception("Dataset not found")
  27. index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
  28. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  29. if action == "remove":
  30. index_processor.clean(dataset, None, with_keywords=False)
  31. elif action == "add":
  32. dataset_documents = (
  33. db.session.query(DatasetDocument)
  34. .where(
  35. DatasetDocument.dataset_id == dataset_id,
  36. DatasetDocument.indexing_status == "completed",
  37. DatasetDocument.enabled == True,
  38. DatasetDocument.archived == False,
  39. )
  40. .all()
  41. )
  42. if dataset_documents:
  43. dataset_documents_ids = [doc.id for doc in dataset_documents]
  44. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  45. {"indexing_status": "indexing"}, synchronize_session=False
  46. )
  47. db.session.commit()
  48. for dataset_document in dataset_documents:
  49. try:
  50. # add from vector index
  51. segments = (
  52. db.session.query(DocumentSegment)
  53. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  54. .order_by(DocumentSegment.position.asc())
  55. .all()
  56. )
  57. if segments:
  58. documents = []
  59. for segment in segments:
  60. document = Document(
  61. page_content=segment.content,
  62. metadata={
  63. "doc_id": segment.index_node_id,
  64. "doc_hash": segment.index_node_hash,
  65. "document_id": segment.document_id,
  66. "dataset_id": segment.dataset_id,
  67. },
  68. )
  69. documents.append(document)
  70. # save vector index
  71. index_processor.load(dataset, documents, with_keywords=False)
  72. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  73. {"indexing_status": "completed"}, synchronize_session=False
  74. )
  75. db.session.commit()
  76. except Exception as e:
  77. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  78. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  79. )
  80. db.session.commit()
  81. elif action == "update":
  82. dataset_documents = (
  83. db.session.query(DatasetDocument)
  84. .where(
  85. DatasetDocument.dataset_id == dataset_id,
  86. DatasetDocument.indexing_status == "completed",
  87. DatasetDocument.enabled == True,
  88. DatasetDocument.archived == False,
  89. )
  90. .all()
  91. )
  92. # add new index
  93. if dataset_documents:
  94. # update document status
  95. dataset_documents_ids = [doc.id for doc in dataset_documents]
  96. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  97. {"indexing_status": "indexing"}, synchronize_session=False
  98. )
  99. db.session.commit()
  100. # clean index
  101. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  102. for dataset_document in dataset_documents:
  103. # update from vector index
  104. try:
  105. segments = (
  106. db.session.query(DocumentSegment)
  107. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  108. .order_by(DocumentSegment.position.asc())
  109. .all()
  110. )
  111. if segments:
  112. documents = []
  113. for segment in segments:
  114. document = Document(
  115. page_content=segment.content,
  116. metadata={
  117. "doc_id": segment.index_node_id,
  118. "doc_hash": segment.index_node_hash,
  119. "document_id": segment.document_id,
  120. "dataset_id": segment.dataset_id,
  121. },
  122. )
  123. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  124. child_chunks = segment.get_child_chunks()
  125. if child_chunks:
  126. child_documents = []
  127. for child_chunk in child_chunks:
  128. child_document = ChildDocument(
  129. page_content=child_chunk.content,
  130. metadata={
  131. "doc_id": child_chunk.index_node_id,
  132. "doc_hash": child_chunk.index_node_hash,
  133. "document_id": segment.document_id,
  134. "dataset_id": segment.dataset_id,
  135. },
  136. )
  137. child_documents.append(child_document)
  138. document.children = child_documents
  139. documents.append(document)
  140. # save vector index
  141. index_processor.load(dataset, documents, with_keywords=False)
  142. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  143. {"indexing_status": "completed"}, synchronize_session=False
  144. )
  145. db.session.commit()
  146. except Exception as e:
  147. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  148. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  149. )
  150. db.session.commit()
  151. else:
  152. # clean collection
  153. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  154. end_at = time.perf_counter()
  155. logger.info(click.style(f"Deal dataset vector index: {dataset_id} latency: {end_at - start_at}", fg="green"))
  156. except Exception:
  157. logger.exception("Deal dataset vector index failed")
  158. finally:
  159. db.session.close()