- import uuid
 - from datetime import datetime, timezone
 - 
 - import pandas as pd
 - from flask import request
 - from flask_login import current_user
 - from flask_restful import Resource, marshal, reqparse
 - from werkzeug.exceptions import Forbidden, NotFound
 - 
 - import services
 - from controllers.console import api
 - from controllers.console.app.error import ProviderNotInitializeError
 - from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
 - from controllers.console.setup import setup_required
 - from controllers.console.wraps import (
 -     account_initialization_required,
 -     cloud_edition_billing_knowledge_limit_check,
 -     cloud_edition_billing_resource_check,
 - )
 - from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from fields.segment_fields import segment_fields
 - from libs.login import login_required
 - from models.dataset import DocumentSegment
 - from services.dataset_service import DatasetService, DocumentService, SegmentService
 - from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
 - from tasks.disable_segment_from_index_task import disable_segment_from_index_task
 - from tasks.enable_segment_to_index_task import enable_segment_to_index_task
 - 
 - 
 - class DatasetDocumentSegmentListApi(Resource):
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     def get(self, dataset_id, document_id):
 -         dataset_id = str(dataset_id)
 -         document_id = str(document_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         try:
 -             DatasetService.check_dataset_permission(dataset, current_user)
 -         except services.errors.account.NoPermissionError as e:
 -             raise Forbidden(str(e))
 - 
 -         document = DocumentService.get_document(dataset_id, document_id)
 - 
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("last_id", type=str, default=None, location="args")
 -         parser.add_argument("limit", type=int, default=20, location="args")
 -         parser.add_argument("status", type=str, action="append", default=[], location="args")
 -         parser.add_argument("hit_count_gte", type=int, default=None, location="args")
 -         parser.add_argument("enabled", type=str, default="all", location="args")
 -         parser.add_argument("keyword", type=str, default=None, location="args")
 -         args = parser.parse_args()
 - 
 -         last_id = args["last_id"]
 -         limit = min(args["limit"], 100)
 -         status_list = args["status"]
 -         hit_count_gte = args["hit_count_gte"]
 -         keyword = args["keyword"]
 - 
 -         query = DocumentSegment.query.filter(
 -             DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         )
 - 
 -         if last_id is not None:
 -             last_segment = db.session.get(DocumentSegment, str(last_id))
 -             if last_segment:
 -                 query = query.filter(DocumentSegment.position > last_segment.position)
 -             else:
 -                 return {"data": [], "has_more": False, "limit": limit}, 200
 - 
 -         if status_list:
 -             query = query.filter(DocumentSegment.status.in_(status_list))
 - 
 -         if hit_count_gte is not None:
 -             query = query.filter(DocumentSegment.hit_count >= hit_count_gte)
 - 
 -         if keyword:
 -             query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
 - 
 -         if args["enabled"].lower() != "all":
 -             if args["enabled"].lower() == "true":
 -                 query = query.filter(DocumentSegment.enabled == True)
 -             elif args["enabled"].lower() == "false":
 -                 query = query.filter(DocumentSegment.enabled == False)
 - 
 -         total = query.count()
 -         segments = query.order_by(DocumentSegment.position).limit(limit + 1).all()
 - 
 -         has_more = False
 -         if len(segments) > limit:
 -             has_more = True
 -             segments = segments[:-1]
 - 
 -         return {
 -             "data": marshal(segments, segment_fields),
 -             "doc_form": document.doc_form,
 -             "has_more": has_more,
 -             "limit": limit,
 -             "total": total,
 -         }, 200
 - 
 - 
 - class DatasetDocumentSegmentApi(Resource):
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     @cloud_edition_billing_resource_check("vector_space")
 -     def patch(self, dataset_id, segment_id, action):
 -         dataset_id = str(dataset_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # The role of the current user in the ta table must be admin, owner, or editor
 -         if not current_user.is_editor:
 -             raise Forbidden()
 - 
 -         try:
 -             DatasetService.check_dataset_permission(dataset, current_user)
 -         except services.errors.account.NoPermissionError as e:
 -             raise Forbidden(str(e))
 -         if dataset.indexing_technique == "high_quality":
 -             # check embedding model setting
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 - 
 -         segment = DocumentSegment.query.filter(
 -             DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         ).first()
 - 
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         if segment.status != "completed":
 -             raise NotFound("Segment is not completed, enable or disable function is not allowed")
 - 
 -         document_indexing_cache_key = "document_{}_indexing".format(segment.document_id)
 -         cache_result = redis_client.get(document_indexing_cache_key)
 -         if cache_result is not None:
 -             raise InvalidActionError("Document is being indexed, please try again later")
 - 
 -         indexing_cache_key = "segment_{}_indexing".format(segment.id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is not None:
 -             raise InvalidActionError("Segment is being indexed, please try again later")
 - 
 -         if action == "enable":
 -             if segment.enabled:
 -                 raise InvalidActionError("Segment is already enabled.")
 - 
 -             segment.enabled = True
 -             segment.disabled_at = None
 -             segment.disabled_by = None
 -             db.session.commit()
 - 
 -             # Set cache to prevent indexing the same segment multiple times
 -             redis_client.setex(indexing_cache_key, 600, 1)
 - 
 -             enable_segment_to_index_task.delay(segment.id)
 - 
 -             return {"result": "success"}, 200
 -         elif action == "disable":
 -             if not segment.enabled:
 -                 raise InvalidActionError("Segment is already disabled.")
 - 
 -             segment.enabled = False
 -             segment.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
 -             segment.disabled_by = current_user.id
 -             db.session.commit()
 - 
 -             # Set cache to prevent indexing the same segment multiple times
 -             redis_client.setex(indexing_cache_key, 600, 1)
 - 
 -             disable_segment_from_index_task.delay(segment.id)
 - 
 -             return {"result": "success"}, 200
 -         else:
 -             raise InvalidActionError()
 - 
 - 
 - class DatasetDocumentSegmentAddApi(Resource):
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     @cloud_edition_billing_resource_check("vector_space")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment")
 -     def post(self, dataset_id, document_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         if not current_user.is_editor:
 -             raise Forbidden()
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -         try:
 -             DatasetService.check_dataset_permission(dataset, current_user)
 -         except services.errors.account.NoPermissionError as e:
 -             raise Forbidden(str(e))
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("content", type=str, required=True, nullable=False, location="json")
 -         parser.add_argument("answer", type=str, required=False, nullable=True, location="json")
 -         parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 -         SegmentService.segment_create_args_validate(args, document)
 -         segment = SegmentService.create_segment(args, document, dataset)
 -         return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
 - 
 - 
 - class DatasetDocumentSegmentUpdateApi(Resource):
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     @cloud_edition_billing_resource_check("vector_space")
 -     def patch(self, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         if dataset.indexing_technique == "high_quality":
 -             # check embedding model setting
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -             # check segment
 -         segment_id = str(segment_id)
 -         segment = DocumentSegment.query.filter(
 -             DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         ).first()
 -         if not segment:
 -             raise NotFound("Segment not found.")
 -         # The role of the current user in the ta table must be admin, owner, or editor
 -         if not current_user.is_editor:
 -             raise Forbidden()
 -         try:
 -             DatasetService.check_dataset_permission(dataset, current_user)
 -         except services.errors.account.NoPermissionError as e:
 -             raise Forbidden(str(e))
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("content", type=str, required=True, nullable=False, location="json")
 -         parser.add_argument("answer", type=str, required=False, nullable=True, location="json")
 -         parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 -         SegmentService.segment_create_args_validate(args, document)
 -         segment = SegmentService.update_segment(args, segment, document, dataset)
 -         return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
 - 
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     def delete(self, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check segment
 -         segment_id = str(segment_id)
 -         segment = DocumentSegment.query.filter(
 -             DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         ).first()
 -         if not segment:
 -             raise NotFound("Segment not found.")
 -         # The role of the current user in the ta table must be admin or owner
 -         if not current_user.is_editor:
 -             raise Forbidden()
 -         try:
 -             DatasetService.check_dataset_permission(dataset, current_user)
 -         except services.errors.account.NoPermissionError as e:
 -             raise Forbidden(str(e))
 -         SegmentService.delete_segment(segment, document, dataset)
 -         return {"result": "success"}, 200
 - 
 - 
 - class DatasetDocumentSegmentBatchImportApi(Resource):
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     @cloud_edition_billing_resource_check("vector_space")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment")
 -     def post(self, dataset_id, document_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # get file from request
 -         file = request.files["file"]
 -         # check file
 -         if "file" not in request.files:
 -             raise NoFileUploadedError()
 - 
 -         if len(request.files) > 1:
 -             raise TooManyFilesError()
 -         # check file type
 -         if not file.filename.endswith(".csv"):
 -             raise ValueError("Invalid file type. Only CSV files are allowed")
 - 
 -         try:
 -             # Skip the first row
 -             df = pd.read_csv(file)
 -             result = []
 -             for index, row in df.iterrows():
 -                 if document.doc_form == "qa_model":
 -                     data = {"content": row[0], "answer": row[1]}
 -                 else:
 -                     data = {"content": row[0]}
 -                 result.append(data)
 -             if len(result) == 0:
 -                 raise ValueError("The CSV file is empty.")
 -             # async job
 -             job_id = str(uuid.uuid4())
 -             indexing_cache_key = "segment_batch_import_{}".format(str(job_id))
 -             # send batch add segments task
 -             redis_client.setnx(indexing_cache_key, "waiting")
 -             batch_create_segment_to_index_task.delay(
 -                 str(job_id), result, dataset_id, document_id, current_user.current_tenant_id, current_user.id
 -             )
 -         except Exception as e:
 -             return {"error": str(e)}, 500
 -         return {"job_id": job_id, "job_status": "waiting"}, 200
 - 
 -     @setup_required
 -     @login_required
 -     @account_initialization_required
 -     def get(self, job_id):
 -         job_id = str(job_id)
 -         indexing_cache_key = "segment_batch_import_{}".format(job_id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is None:
 -             raise ValueError("The job is not exist.")
 - 
 -         return {"job_id": job_id, "job_status": cache_result.decode()}, 200
 - 
 - 
 - api.add_resource(DatasetDocumentSegmentListApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
 - api.add_resource(DatasetDocumentSegmentApi, "/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>")
 - api.add_resource(DatasetDocumentSegmentAddApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment")
 - api.add_resource(
 -     DatasetDocumentSegmentUpdateApi,
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>",
 - )
 - api.add_resource(
 -     DatasetDocumentSegmentBatchImportApi,
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/batch_import",
 -     "/datasets/batch_import_status/<uuid:job_id>",
 - )
 
 
  |