- from flask_login import current_user
 - from flask_restful import marshal, reqparse
 - from werkzeug.exceptions import NotFound
 - 
 - from controllers.service_api import api
 - from controllers.service_api.app.error import ProviderNotInitializeError
 - from controllers.service_api.wraps import (
 -     DatasetApiResource,
 -     cloud_edition_billing_knowledge_limit_check,
 -     cloud_edition_billing_resource_check,
 - )
 - from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from extensions.ext_database import db
 - from fields.segment_fields import segment_fields
 - from models.dataset import Dataset, DocumentSegment
 - from services.dataset_service import DatasetService, DocumentService, SegmentService
 - 
 - 
 - class SegmentApi(DatasetApiResource):
 -     """Resource for segments."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id):
 -         """Create single segment."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 -         if args["segments"] is not None:
 -             for args_item in args["segments"]:
 -                 SegmentService.segment_create_args_validate(args_item, document)
 -             segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
 -             return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
 -         else:
 -             return {"error": "Segemtns is required"}, 400
 - 
 -     def get(self, tenant_id, dataset_id, document_id):
 -         """Create single segment."""
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset.id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check embedding model setting
 -         if dataset.indexing_technique == "high_quality":
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 - 
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("status", type=str, action="append", default=[], location="args")
 -         parser.add_argument("keyword", type=str, default=None, location="args")
 -         args = parser.parse_args()
 - 
 -         status_list = args["status"]
 -         keyword = args["keyword"]
 - 
 -         query = DocumentSegment.query.filter(
 -             DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         )
 - 
 -         if status_list:
 -             query = query.filter(DocumentSegment.status.in_(status_list))
 - 
 -         if keyword:
 -             query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
 - 
 -         total = query.count()
 -         segments = query.order_by(DocumentSegment.position).all()
 -         return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200
 - 
 - 
 - class DatasetSegmentApi(DatasetApiResource):
 -     def delete(self, tenant_id, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         # check segment
 -         segment = DocumentSegment.query.filter(
 -             DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         ).first()
 -         if not segment:
 -             raise NotFound("Segment not found.")
 -         SegmentService.delete_segment(segment, document, dataset)
 -         return {"result": "success"}, 200
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id, segment_id):
 -         # check dataset
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # check user's model setting
 -         DatasetService.check_dataset_model_setting(dataset)
 -         # check document
 -         document_id = str(document_id)
 -         document = DocumentService.get_document(dataset_id, document_id)
 -         if not document:
 -             raise NotFound("Document not found.")
 -         if dataset.indexing_technique == "high_quality":
 -             # check embedding model setting
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model,
 -                 )
 -             except LLMBadRequestError:
 -                 raise ProviderNotInitializeError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ProviderNotInitializeError(ex.description)
 -             # check segment
 -         segment_id = str(segment_id)
 -         segment = DocumentSegment.query.filter(
 -             DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
 -         ).first()
 -         if not segment:
 -             raise NotFound("Segment not found.")
 - 
 -         # validate args
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
 -         args = parser.parse_args()
 - 
 -         SegmentService.segment_create_args_validate(args["segment"], document)
 -         segment = SegmentService.update_segment(args["segment"], segment, document, dataset)
 -         return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
 - 
 - 
 - api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
 - api.add_resource(
 -     DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
 - )
 
 
  |