- import json
- import logging
- from collections.abc import Mapping, Sequence
- from datetime import UTC, datetime
- from enum import Enum, StrEnum
- from typing import TYPE_CHECKING, Any, Optional, Union
- from uuid import uuid4
-
- from flask_login import current_user
- from sqlalchemy import orm
-
- from core.file.constants import maybe_file_object
- from core.file.models import File
- from core.variables import utils as variable_utils
- from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
- from core.workflow.nodes.enums import NodeType
- from factories.variable_factory import TypeMismatchError, build_segment_with_type
-
- from ._workflow_exc import NodeNotFoundError, WorkflowDataError
-
- if TYPE_CHECKING:
- from models.model import AppMode
-
- import sqlalchemy as sa
- from sqlalchemy import Index, PrimaryKeyConstraint, UniqueConstraint, func
- from sqlalchemy.orm import Mapped, declared_attr, mapped_column
-
- from constants import DEFAULT_FILE_NUMBER_LIMITS, HIDDEN_VALUE
- from core.helper import encrypter
- from core.variables import SecretVariable, Segment, SegmentType, Variable
- from factories import variable_factory
- from libs import helper
-
- from .account import Account
- from .base import Base
- from .engine import db
- from .enums import CreatorUserRole, DraftVariableType
- from .types import EnumText, StringUUID
-
- _logger = logging.getLogger(__name__)
-
- if TYPE_CHECKING:
- from models.model import AppMode
-
-
- class WorkflowType(Enum):
- """
- Workflow Type Enum
- """
-
- WORKFLOW = "workflow"
- CHAT = "chat"
-
- @classmethod
- def value_of(cls, value: str) -> "WorkflowType":
- """
- Get value of given mode.
-
- :param value: mode value
- :return: mode
- """
- for mode in cls:
- if mode.value == value:
- return mode
- raise ValueError(f"invalid workflow type value {value}")
-
- @classmethod
- def from_app_mode(cls, app_mode: Union[str, "AppMode"]) -> "WorkflowType":
- """
- Get workflow type from app mode.
-
- :param app_mode: app mode
- :return: workflow type
- """
- from models.model import AppMode
-
- app_mode = app_mode if isinstance(app_mode, AppMode) else AppMode.value_of(app_mode)
- return cls.WORKFLOW if app_mode == AppMode.WORKFLOW else cls.CHAT
-
-
- class _InvalidGraphDefinitionError(Exception):
- pass
-
-
- class Workflow(Base):
- """
- Workflow, for `Workflow App` and `Chat App workflow mode`.
-
- Attributes:
-
- - id (uuid) Workflow ID, pk
- - tenant_id (uuid) Workspace ID
- - app_id (uuid) App ID
- - type (string) Workflow type
-
- `workflow` for `Workflow App`
-
- `chat` for `Chat App workflow mode`
-
- - version (string) Version
-
- `draft` for draft version (only one for each app), other for version number (redundant)
-
- - graph (text) Workflow canvas configuration (JSON)
-
- The entire canvas configuration JSON, including Node, Edge, and other configurations
-
- - nodes (array[object]) Node list, see Node Schema
-
- - edges (array[object]) Edge list, see Edge Schema
-
- - created_by (uuid) Creator ID
- - created_at (timestamp) Creation time
- - updated_by (uuid) `optional` Last updater ID
- - updated_at (timestamp) `optional` Last update time
- """
-
- __tablename__ = "workflows"
- __table_args__ = (
- db.PrimaryKeyConstraint("id", name="workflow_pkey"),
- db.Index("workflow_version_idx", "tenant_id", "app_id", "version"),
- )
-
- id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
- tenant_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
- app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
- type: Mapped[str] = mapped_column(db.String(255), nullable=False)
- version: Mapped[str] = mapped_column(db.String(255), nullable=False)
- marked_name: Mapped[str] = mapped_column(default="", server_default="")
- marked_comment: Mapped[str] = mapped_column(default="", server_default="")
- graph: Mapped[str] = mapped_column(sa.Text)
- _features: Mapped[str] = mapped_column("features", sa.TEXT)
- created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
- created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
- updated_by: Mapped[Optional[str]] = mapped_column(StringUUID)
- updated_at: Mapped[datetime] = mapped_column(
- db.DateTime,
- nullable=False,
- default=datetime.now(UTC).replace(tzinfo=None),
- server_onupdate=func.current_timestamp(),
- )
- _environment_variables: Mapped[str] = mapped_column(
- "environment_variables", db.Text, nullable=False, server_default="{}"
- )
- _conversation_variables: Mapped[str] = mapped_column(
- "conversation_variables", db.Text, nullable=False, server_default="{}"
- )
-
- VERSION_DRAFT = "draft"
-
- @classmethod
- def new(
- cls,
- *,
- tenant_id: str,
- app_id: str,
- type: str,
- version: str,
- graph: str,
- features: str,
- created_by: str,
- environment_variables: Sequence[Variable],
- conversation_variables: Sequence[Variable],
- marked_name: str = "",
- marked_comment: str = "",
- ) -> "Workflow":
- workflow = Workflow()
- workflow.id = str(uuid4())
- workflow.tenant_id = tenant_id
- workflow.app_id = app_id
- workflow.type = type
- workflow.version = version
- workflow.graph = graph
- workflow.features = features
- workflow.created_by = created_by
- workflow.environment_variables = environment_variables or []
- workflow.conversation_variables = conversation_variables or []
- workflow.marked_name = marked_name
- workflow.marked_comment = marked_comment
- workflow.created_at = datetime.now(UTC).replace(tzinfo=None)
- workflow.updated_at = workflow.created_at
- return workflow
-
- @property
- def created_by_account(self):
- return db.session.get(Account, self.created_by)
-
- @property
- def updated_by_account(self):
- return db.session.get(Account, self.updated_by) if self.updated_by else None
-
- @property
- def graph_dict(self) -> Mapping[str, Any]:
- # TODO(QuantumGhost): Consider caching `graph_dict` to avoid repeated JSON decoding.
- #
- # Using `functools.cached_property` could help, but some code in the codebase may
- # modify the returned dict, which can cause issues elsewhere.
- #
- # For example, changing this property to a cached property led to errors like the
- # following when single stepping an `Iteration` node:
- #
- # Root node id 1748401971780start not found in the graph
- #
- # There is currently no standard way to make a dict deeply immutable in Python,
- # and tracking modifications to the returned dict is difficult. For now, we leave
- # the code as-is to avoid these issues.
- #
- # Currently, the following functions / methods would mutate the returned dict:
- #
- # - `_get_graph_and_variable_pool_of_single_iteration`.
- # - `_get_graph_and_variable_pool_of_single_loop`.
- return json.loads(self.graph) if self.graph else {}
-
- def get_node_config_by_id(self, node_id: str) -> Mapping[str, Any]:
- """Extract a node configuration from the workflow graph by node ID.
- A node configuration is a dictionary containing the node's properties, including
- the node's id, title, and its data as a dict.
- """
- workflow_graph = self.graph_dict
-
- if not workflow_graph:
- raise WorkflowDataError(f"workflow graph not found, workflow_id={self.id}")
-
- nodes = workflow_graph.get("nodes")
- if not nodes:
- raise WorkflowDataError("nodes not found in workflow graph")
-
- try:
- node_config = next(filter(lambda node: node["id"] == node_id, nodes))
- except StopIteration:
- raise NodeNotFoundError(node_id)
- assert isinstance(node_config, dict)
- return node_config
-
- @staticmethod
- def get_node_type_from_node_config(node_config: Mapping[str, Any]) -> NodeType:
- """Extract type of a node from the node configuration returned by `get_node_config_by_id`."""
- node_config_data = node_config.get("data", {})
- # Get node class
- node_type = NodeType(node_config_data.get("type"))
- return node_type
-
- @staticmethod
- def get_enclosing_node_type_and_id(node_config: Mapping[str, Any]) -> tuple[NodeType, str] | None:
- in_loop = node_config.get("isInLoop", False)
- in_iteration = node_config.get("isInIteration", False)
- if in_loop:
- loop_id = node_config.get("loop_id")
- if loop_id is None:
- raise _InvalidGraphDefinitionError("invalid graph")
- return NodeType.LOOP, loop_id
- elif in_iteration:
- iteration_id = node_config.get("iteration_id")
- if iteration_id is None:
- raise _InvalidGraphDefinitionError("invalid graph")
- return NodeType.ITERATION, iteration_id
- else:
- return None
-
- @property
- def features(self) -> str:
- """
- Convert old features structure to new features structure.
- """
- if not self._features:
- return self._features
-
- features = json.loads(self._features)
- if features.get("file_upload", {}).get("image", {}).get("enabled", False):
- image_enabled = True
- image_number_limits = int(features["file_upload"]["image"].get("number_limits", DEFAULT_FILE_NUMBER_LIMITS))
- image_transfer_methods = features["file_upload"]["image"].get(
- "transfer_methods", ["remote_url", "local_file"]
- )
- features["file_upload"]["enabled"] = image_enabled
- features["file_upload"]["number_limits"] = image_number_limits
- features["file_upload"]["allowed_file_upload_methods"] = image_transfer_methods
- features["file_upload"]["allowed_file_types"] = features["file_upload"].get("allowed_file_types", ["image"])
- features["file_upload"]["allowed_file_extensions"] = features["file_upload"].get(
- "allowed_file_extensions", []
- )
- del features["file_upload"]["image"]
- self._features = json.dumps(features)
- return self._features
-
- @features.setter
- def features(self, value: str) -> None:
- self._features = value
-
- @property
- def features_dict(self) -> dict[str, Any]:
- return json.loads(self.features) if self.features else {}
-
- def user_input_form(self, to_old_structure: bool = False) -> list:
- # get start node from graph
- if not self.graph:
- return []
-
- graph_dict = self.graph_dict
- if "nodes" not in graph_dict:
- return []
-
- start_node = next((node for node in graph_dict["nodes"] if node["data"]["type"] == "start"), None)
- if not start_node:
- return []
-
- # get user_input_form from start node
- variables: list[Any] = start_node.get("data", {}).get("variables", [])
-
- if to_old_structure:
- old_structure_variables = []
- for variable in variables:
- old_structure_variables.append({variable["type"]: variable})
-
- return old_structure_variables
-
- return variables
-
- @property
- def unique_hash(self) -> str:
- """
- Get hash of workflow.
-
- :return: hash
- """
- entity = {"graph": self.graph_dict, "features": self.features_dict}
-
- return helper.generate_text_hash(json.dumps(entity, sort_keys=True))
-
- @property
- def tool_published(self) -> bool:
- """
- DEPRECATED: This property is not accurate for determining if a workflow is published as a tool.
- It only checks if there's a WorkflowToolProvider for the app, not if this specific workflow version
- is the one being used by the tool.
-
- For accurate checking, use a direct query with tenant_id, app_id, and version.
- """
- from models.tools import WorkflowToolProvider
-
- return (
- db.session.query(WorkflowToolProvider)
- .filter(WorkflowToolProvider.tenant_id == self.tenant_id, WorkflowToolProvider.app_id == self.app_id)
- .count()
- > 0
- )
-
- @property
- def environment_variables(self) -> Sequence[Variable]:
- # TODO: find some way to init `self._environment_variables` when instance created.
- if self._environment_variables is None:
- self._environment_variables = "{}"
-
- # Get tenant_id from current_user (Account or EndUser)
- if isinstance(current_user, Account):
- # Account user
- tenant_id = current_user.current_tenant_id
- else:
- # EndUser
- tenant_id = current_user.tenant_id
-
- if not tenant_id:
- return []
-
- environment_variables_dict: dict[str, Any] = json.loads(self._environment_variables)
- results = [
- variable_factory.build_environment_variable_from_mapping(v) for v in environment_variables_dict.values()
- ]
-
- # decrypt secret variables value
- def decrypt_func(var):
- if isinstance(var, SecretVariable):
- return var.model_copy(update={"value": encrypter.decrypt_token(tenant_id=tenant_id, token=var.value)})
- else:
- return var
-
- results = list(map(decrypt_func, results))
- return results
-
- @environment_variables.setter
- def environment_variables(self, value: Sequence[Variable]):
- if not value:
- self._environment_variables = "{}"
- return
-
- # Get tenant_id from current_user (Account or EndUser)
- if isinstance(current_user, Account):
- # Account user
- tenant_id = current_user.current_tenant_id
- else:
- # EndUser
- tenant_id = current_user.tenant_id
-
- if not tenant_id:
- self._environment_variables = "{}"
- return
-
- value = list(value)
- if any(var for var in value if not var.id):
- raise ValueError("environment variable require a unique id")
-
- # Compare inputs and origin variables,
- # if the value is HIDDEN_VALUE, use the origin variable value (only update `name`).
- origin_variables_dictionary = {var.id: var for var in self.environment_variables}
- for i, variable in enumerate(value):
- if variable.id in origin_variables_dictionary and variable.value == HIDDEN_VALUE:
- value[i] = origin_variables_dictionary[variable.id].model_copy(update={"name": variable.name})
-
- # encrypt secret variables value
- def encrypt_func(var):
- if isinstance(var, SecretVariable):
- return var.model_copy(update={"value": encrypter.encrypt_token(tenant_id=tenant_id, token=var.value)})
- else:
- return var
-
- encrypted_vars = list(map(encrypt_func, value))
- environment_variables_json = json.dumps(
- {var.name: var.model_dump() for var in encrypted_vars},
- ensure_ascii=False,
- )
- self._environment_variables = environment_variables_json
-
- def to_dict(self, *, include_secret: bool = False) -> Mapping[str, Any]:
- environment_variables = list(self.environment_variables)
- environment_variables = [
- v if not isinstance(v, SecretVariable) or include_secret else v.model_copy(update={"value": ""})
- for v in environment_variables
- ]
-
- result = {
- "graph": self.graph_dict,
- "features": self.features_dict,
- "environment_variables": [var.model_dump(mode="json") for var in environment_variables],
- "conversation_variables": [var.model_dump(mode="json") for var in self.conversation_variables],
- }
- return result
-
- @property
- def conversation_variables(self) -> Sequence[Variable]:
- # TODO: find some way to init `self._conversation_variables` when instance created.
- if self._conversation_variables is None:
- self._conversation_variables = "{}"
-
- variables_dict: dict[str, Any] = json.loads(self._conversation_variables)
- results = [variable_factory.build_conversation_variable_from_mapping(v) for v in variables_dict.values()]
- return results
-
- @conversation_variables.setter
- def conversation_variables(self, value: Sequence[Variable]) -> None:
- self._conversation_variables = json.dumps(
- {var.name: var.model_dump() for var in value},
- ensure_ascii=False,
- )
-
- @staticmethod
- def version_from_datetime(d: datetime) -> str:
- return str(d)
-
-
- class WorkflowRun(Base):
- """
- Workflow Run
-
- Attributes:
-
- - id (uuid) Run ID
- - tenant_id (uuid) Workspace ID
- - app_id (uuid) App ID
-
- - workflow_id (uuid) Workflow ID
- - type (string) Workflow type
- - triggered_from (string) Trigger source
-
- `debugging` for canvas debugging
-
- `app-run` for (published) app execution
-
- - version (string) Version
- - graph (text) Workflow canvas configuration (JSON)
- - inputs (text) Input parameters
- - status (string) Execution status, `running` / `succeeded` / `failed` / `stopped`
- - outputs (text) `optional` Output content
- - error (string) `optional` Error reason
- - elapsed_time (float) `optional` Time consumption (s)
- - total_tokens (int) `optional` Total tokens used
- - total_steps (int) Total steps (redundant), default 0
- - created_by_role (string) Creator role
-
- - `account` Console account
-
- - `end_user` End user
-
- - created_by (uuid) Runner ID
- - created_at (timestamp) Run time
- - finished_at (timestamp) End time
- """
-
- __tablename__ = "workflow_runs"
- __table_args__ = (
- db.PrimaryKeyConstraint("id", name="workflow_run_pkey"),
- db.Index("workflow_run_triggerd_from_idx", "tenant_id", "app_id", "triggered_from"),
- )
-
- id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
- tenant_id: Mapped[str] = mapped_column(StringUUID)
- app_id: Mapped[str] = mapped_column(StringUUID)
-
- workflow_id: Mapped[str] = mapped_column(StringUUID)
- type: Mapped[str] = mapped_column(db.String(255))
- triggered_from: Mapped[str] = mapped_column(db.String(255))
- version: Mapped[str] = mapped_column(db.String(255))
- graph: Mapped[Optional[str]] = mapped_column(db.Text)
- inputs: Mapped[Optional[str]] = mapped_column(db.Text)
- status: Mapped[str] = mapped_column(db.String(255)) # running, succeeded, failed, stopped, partial-succeeded
- outputs: Mapped[Optional[str]] = mapped_column(sa.Text, default="{}")
- error: Mapped[Optional[str]] = mapped_column(db.Text)
- elapsed_time: Mapped[float] = mapped_column(db.Float, nullable=False, server_default=sa.text("0"))
- total_tokens: Mapped[int] = mapped_column(sa.BigInteger, server_default=sa.text("0"))
- total_steps: Mapped[int] = mapped_column(db.Integer, server_default=db.text("0"), nullable=True)
- created_by_role: Mapped[str] = mapped_column(db.String(255)) # account, end_user
- created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
- created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
- finished_at: Mapped[Optional[datetime]] = mapped_column(db.DateTime)
- exceptions_count: Mapped[int] = mapped_column(db.Integer, server_default=db.text("0"), nullable=True)
-
- @property
- def created_by_account(self):
- created_by_role = CreatorUserRole(self.created_by_role)
- return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
-
- @property
- def created_by_end_user(self):
- from models.model import EndUser
-
- created_by_role = CreatorUserRole(self.created_by_role)
- return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
-
- @property
- def graph_dict(self) -> Mapping[str, Any]:
- return json.loads(self.graph) if self.graph else {}
-
- @property
- def inputs_dict(self) -> Mapping[str, Any]:
- return json.loads(self.inputs) if self.inputs else {}
-
- @property
- def outputs_dict(self) -> Mapping[str, Any]:
- return json.loads(self.outputs) if self.outputs else {}
-
- @property
- def message(self):
- from models.model import Message
-
- return (
- db.session.query(Message).filter(Message.app_id == self.app_id, Message.workflow_run_id == self.id).first()
- )
-
- @property
- def workflow(self):
- return db.session.query(Workflow).filter(Workflow.id == self.workflow_id).first()
-
- def to_dict(self):
- return {
- "id": self.id,
- "tenant_id": self.tenant_id,
- "app_id": self.app_id,
- "workflow_id": self.workflow_id,
- "type": self.type,
- "triggered_from": self.triggered_from,
- "version": self.version,
- "graph": self.graph_dict,
- "inputs": self.inputs_dict,
- "status": self.status,
- "outputs": self.outputs_dict,
- "error": self.error,
- "elapsed_time": self.elapsed_time,
- "total_tokens": self.total_tokens,
- "total_steps": self.total_steps,
- "created_by_role": self.created_by_role,
- "created_by": self.created_by,
- "created_at": self.created_at,
- "finished_at": self.finished_at,
- "exceptions_count": self.exceptions_count,
- }
-
- @classmethod
- def from_dict(cls, data: dict) -> "WorkflowRun":
- return cls(
- id=data.get("id"),
- tenant_id=data.get("tenant_id"),
- app_id=data.get("app_id"),
- workflow_id=data.get("workflow_id"),
- type=data.get("type"),
- triggered_from=data.get("triggered_from"),
- version=data.get("version"),
- graph=json.dumps(data.get("graph")),
- inputs=json.dumps(data.get("inputs")),
- status=data.get("status"),
- outputs=json.dumps(data.get("outputs")),
- error=data.get("error"),
- elapsed_time=data.get("elapsed_time"),
- total_tokens=data.get("total_tokens"),
- total_steps=data.get("total_steps"),
- created_by_role=data.get("created_by_role"),
- created_by=data.get("created_by"),
- created_at=data.get("created_at"),
- finished_at=data.get("finished_at"),
- exceptions_count=data.get("exceptions_count"),
- )
-
-
- class WorkflowNodeExecutionTriggeredFrom(StrEnum):
- """
- Workflow Node Execution Triggered From Enum
- """
-
- SINGLE_STEP = "single-step"
- WORKFLOW_RUN = "workflow-run"
-
-
- class WorkflowNodeExecutionModel(Base):
- """
- Workflow Node Execution
-
- - id (uuid) Execution ID
- - tenant_id (uuid) Workspace ID
- - app_id (uuid) App ID
- - workflow_id (uuid) Workflow ID
- - triggered_from (string) Trigger source
-
- `single-step` for single-step debugging
-
- `workflow-run` for workflow execution (debugging / user execution)
-
- - workflow_run_id (uuid) `optional` Workflow run ID
-
- Null for single-step debugging.
-
- - index (int) Execution sequence number, used for displaying Tracing Node order
- - predecessor_node_id (string) `optional` Predecessor node ID, used for displaying execution path
- - node_id (string) Node ID
- - node_type (string) Node type, such as `start`
- - title (string) Node title
- - inputs (json) All predecessor node variable content used in the node
- - process_data (json) Node process data
- - outputs (json) `optional` Node output variables
- - status (string) Execution status, `running` / `succeeded` / `failed`
- - error (string) `optional` Error reason
- - elapsed_time (float) `optional` Time consumption (s)
- - execution_metadata (text) Metadata
-
- - total_tokens (int) `optional` Total tokens used
-
- - total_price (decimal) `optional` Total cost
-
- - currency (string) `optional` Currency, such as USD / RMB
-
- - created_at (timestamp) Run time
- - created_by_role (string) Creator role
-
- - `account` Console account
-
- - `end_user` End user
-
- - created_by (uuid) Runner ID
- - finished_at (timestamp) End time
- """
-
- __tablename__ = "workflow_node_executions"
-
- @declared_attr
- def __table_args__(cls): # noqa
- return (
- PrimaryKeyConstraint("id", name="workflow_node_execution_pkey"),
- Index(
- "workflow_node_execution_workflow_run_idx",
- "tenant_id",
- "app_id",
- "workflow_id",
- "triggered_from",
- "workflow_run_id",
- ),
- Index(
- "workflow_node_execution_node_run_idx",
- "tenant_id",
- "app_id",
- "workflow_id",
- "triggered_from",
- "node_id",
- ),
- Index(
- "workflow_node_execution_id_idx",
- "tenant_id",
- "app_id",
- "workflow_id",
- "triggered_from",
- "node_execution_id",
- ),
- Index(
- # The first argument is the index name,
- # which we leave as `None`` to allow auto-generation by the ORM.
- None,
- cls.tenant_id,
- cls.workflow_id,
- cls.node_id,
- # MyPy may flag the following line because it doesn't recognize that
- # the `declared_attr` decorator passes the receiving class as the first
- # argument to this method, allowing us to reference class attributes.
- cls.created_at.desc(), # type: ignore
- ),
- )
-
- id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
- tenant_id: Mapped[str] = mapped_column(StringUUID)
- app_id: Mapped[str] = mapped_column(StringUUID)
- workflow_id: Mapped[str] = mapped_column(StringUUID)
- triggered_from: Mapped[str] = mapped_column(db.String(255))
- workflow_run_id: Mapped[Optional[str]] = mapped_column(StringUUID)
- index: Mapped[int] = mapped_column(db.Integer)
- predecessor_node_id: Mapped[Optional[str]] = mapped_column(db.String(255))
- node_execution_id: Mapped[Optional[str]] = mapped_column(db.String(255))
- node_id: Mapped[str] = mapped_column(db.String(255))
- node_type: Mapped[str] = mapped_column(db.String(255))
- title: Mapped[str] = mapped_column(db.String(255))
- inputs: Mapped[Optional[str]] = mapped_column(db.Text)
- process_data: Mapped[Optional[str]] = mapped_column(db.Text)
- outputs: Mapped[Optional[str]] = mapped_column(db.Text)
- status: Mapped[str] = mapped_column(db.String(255))
- error: Mapped[Optional[str]] = mapped_column(db.Text)
- elapsed_time: Mapped[float] = mapped_column(db.Float, server_default=db.text("0"))
- execution_metadata: Mapped[Optional[str]] = mapped_column(db.Text)
- created_at: Mapped[datetime] = mapped_column(db.DateTime, server_default=func.current_timestamp())
- created_by_role: Mapped[str] = mapped_column(db.String(255))
- created_by: Mapped[str] = mapped_column(StringUUID)
- finished_at: Mapped[Optional[datetime]] = mapped_column(db.DateTime)
-
- @property
- def created_by_account(self):
- created_by_role = CreatorUserRole(self.created_by_role)
- # TODO(-LAN-): Avoid using db.session.get() here.
- return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
-
- @property
- def created_by_end_user(self):
- from models.model import EndUser
-
- created_by_role = CreatorUserRole(self.created_by_role)
- # TODO(-LAN-): Avoid using db.session.get() here.
- return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
-
- @property
- def inputs_dict(self):
- return json.loads(self.inputs) if self.inputs else None
-
- @property
- def outputs_dict(self) -> dict[str, Any] | None:
- return json.loads(self.outputs) if self.outputs else None
-
- @property
- def process_data_dict(self):
- return json.loads(self.process_data) if self.process_data else None
-
- @property
- def execution_metadata_dict(self) -> dict[str, Any]:
- # When the metadata is unset, we return an empty dictionary instead of `None`.
- # This approach streamlines the logic for the caller, making it easier to handle
- # cases where metadata is absent.
- return json.loads(self.execution_metadata) if self.execution_metadata else {}
-
- @property
- def extras(self):
- from core.tools.tool_manager import ToolManager
-
- extras = {}
- if self.execution_metadata_dict:
- from core.workflow.nodes import NodeType
-
- if self.node_type == NodeType.TOOL.value and "tool_info" in self.execution_metadata_dict:
- tool_info = self.execution_metadata_dict["tool_info"]
- extras["icon"] = ToolManager.get_tool_icon(
- tenant_id=self.tenant_id,
- provider_type=tool_info["provider_type"],
- provider_id=tool_info["provider_id"],
- )
-
- return extras
-
-
- class WorkflowAppLogCreatedFrom(Enum):
- """
- Workflow App Log Created From Enum
- """
-
- SERVICE_API = "service-api"
- WEB_APP = "web-app"
- INSTALLED_APP = "installed-app"
-
- @classmethod
- def value_of(cls, value: str) -> "WorkflowAppLogCreatedFrom":
- """
- Get value of given mode.
-
- :param value: mode value
- :return: mode
- """
- for mode in cls:
- if mode.value == value:
- return mode
- raise ValueError(f"invalid workflow app log created from value {value}")
-
-
- class WorkflowAppLog(Base):
- """
- Workflow App execution log, excluding workflow debugging records.
-
- Attributes:
-
- - id (uuid) run ID
- - tenant_id (uuid) Workspace ID
- - app_id (uuid) App ID
- - workflow_id (uuid) Associated Workflow ID
- - workflow_run_id (uuid) Associated Workflow Run ID
- - created_from (string) Creation source
-
- `service-api` App Execution OpenAPI
-
- `web-app` WebApp
-
- `installed-app` Installed App
-
- - created_by_role (string) Creator role
-
- - `account` Console account
-
- - `end_user` End user
-
- - created_by (uuid) Creator ID, depends on the user table according to created_by_role
- - created_at (timestamp) Creation time
- """
-
- __tablename__ = "workflow_app_logs"
- __table_args__ = (
- db.PrimaryKeyConstraint("id", name="workflow_app_log_pkey"),
- db.Index("workflow_app_log_app_idx", "tenant_id", "app_id"),
- )
-
- id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
- tenant_id: Mapped[str] = mapped_column(StringUUID)
- app_id: Mapped[str] = mapped_column(StringUUID)
- workflow_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
- workflow_run_id: Mapped[str] = mapped_column(StringUUID)
- created_from: Mapped[str] = mapped_column(db.String(255), nullable=False)
- created_by_role: Mapped[str] = mapped_column(db.String(255), nullable=False)
- created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
- created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
-
- @property
- def workflow_run(self):
- return db.session.get(WorkflowRun, self.workflow_run_id)
-
- @property
- def created_by_account(self):
- created_by_role = CreatorUserRole(self.created_by_role)
- return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
-
- @property
- def created_by_end_user(self):
- from models.model import EndUser
-
- created_by_role = CreatorUserRole(self.created_by_role)
- return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
-
-
- class ConversationVariable(Base):
- __tablename__ = "workflow_conversation_variables"
-
- id: Mapped[str] = mapped_column(StringUUID, primary_key=True)
- conversation_id: Mapped[str] = mapped_column(StringUUID, nullable=False, primary_key=True, index=True)
- app_id: Mapped[str] = mapped_column(StringUUID, nullable=False, index=True)
- data: Mapped[str] = mapped_column(db.Text, nullable=False)
- created_at: Mapped[datetime] = mapped_column(
- db.DateTime, nullable=False, server_default=func.current_timestamp(), index=True
- )
- updated_at: Mapped[datetime] = mapped_column(
- db.DateTime, nullable=False, server_default=func.current_timestamp(), onupdate=func.current_timestamp()
- )
-
- def __init__(self, *, id: str, app_id: str, conversation_id: str, data: str) -> None:
- self.id = id
- self.app_id = app_id
- self.conversation_id = conversation_id
- self.data = data
-
- @classmethod
- def from_variable(cls, *, app_id: str, conversation_id: str, variable: Variable) -> "ConversationVariable":
- obj = cls(
- id=variable.id,
- app_id=app_id,
- conversation_id=conversation_id,
- data=variable.model_dump_json(),
- )
- return obj
-
- def to_variable(self) -> Variable:
- mapping = json.loads(self.data)
- return variable_factory.build_conversation_variable_from_mapping(mapping)
-
-
- # Only `sys.query` and `sys.files` could be modified.
- _EDITABLE_SYSTEM_VARIABLE = frozenset(["query", "files"])
-
-
- def _naive_utc_datetime():
- return datetime.now(UTC).replace(tzinfo=None)
-
-
- class WorkflowDraftVariable(Base):
- """`WorkflowDraftVariable` record variables and outputs generated during
- debugging worfklow or chatflow.
-
- IMPORTANT: This model maintains multiple invariant rules that must be preserved.
- Do not instantiate this class directly with the constructor.
-
- Instead, use the factory methods (`new_conversation_variable`, `new_sys_variable`,
- `new_node_variable`) defined below to ensure all invariants are properly maintained.
- """
-
- @staticmethod
- def unique_app_id_node_id_name() -> list[str]:
- return [
- "app_id",
- "node_id",
- "name",
- ]
-
- __tablename__ = "workflow_draft_variables"
- __table_args__ = (UniqueConstraint(*unique_app_id_node_id_name()),)
- # Required for instance variable annotation.
- __allow_unmapped__ = True
-
- # id is the unique identifier of a draft variable.
- id: Mapped[str] = mapped_column(StringUUID, primary_key=True, server_default=db.text("uuid_generate_v4()"))
-
- created_at: Mapped[datetime] = mapped_column(
- db.DateTime,
- nullable=False,
- default=_naive_utc_datetime,
- server_default=func.current_timestamp(),
- )
-
- updated_at: Mapped[datetime] = mapped_column(
- db.DateTime,
- nullable=False,
- default=_naive_utc_datetime,
- server_default=func.current_timestamp(),
- onupdate=func.current_timestamp(),
- )
-
- # "`app_id` maps to the `id` field in the `model.App` model."
- app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
-
- # `last_edited_at` records when the value of a given draft variable
- # is edited.
- #
- # If it's not edited after creation, its value is `None`.
- last_edited_at: Mapped[datetime | None] = mapped_column(
- db.DateTime,
- nullable=True,
- default=None,
- )
-
- # The `node_id` field is special.
- #
- # If the variable is a conversation variable or a system variable, then the value of `node_id`
- # is `conversation` or `sys`, respective.
- #
- # Otherwise, if the variable is a variable belonging to a specific node, the value of `_node_id` is
- # the identity of correspond node in graph definition. An example of node id is `"1745769620734"`.
- #
- # However, there's one caveat. The id of the first "Answer" node in chatflow is "answer". (Other
- # "Answer" node conform the rules above.)
- node_id: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="node_id")
-
- # From `VARIABLE_PATTERN`, we may conclude that the length of a top level variable is less than
- # 80 chars.
- #
- # ref: api/core/workflow/entities/variable_pool.py:18
- name: Mapped[str] = mapped_column(sa.String(255), nullable=False)
- description: Mapped[str] = mapped_column(
- sa.String(255),
- default="",
- nullable=False,
- )
-
- selector: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="selector")
-
- # The data type of this variable's value
- value_type: Mapped[SegmentType] = mapped_column(EnumText(SegmentType, length=20))
-
- # The variable's value serialized as a JSON string
- value: Mapped[str] = mapped_column(sa.Text, nullable=False, name="value")
-
- # Controls whether the variable should be displayed in the variable inspection panel
- visible: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=True)
-
- # Determines whether this variable can be modified by users
- editable: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=False)
-
- # The `node_execution_id` field identifies the workflow node execution that created this variable.
- # It corresponds to the `id` field in the `WorkflowNodeExecutionModel` model.
- #
- # This field is not `None` for system variables and node variables, and is `None`
- # for conversation variables.
- node_execution_id: Mapped[str | None] = mapped_column(
- StringUUID,
- nullable=True,
- default=None,
- )
-
- # Cache for deserialized value
- #
- # NOTE(QuantumGhost): This field serves two purposes:
- #
- # 1. Caches deserialized values to reduce repeated parsing costs
- # 2. Allows modification of the deserialized value after retrieval,
- # particularly important for `File`` variables which require database
- # lookups to obtain storage_key and other metadata
- #
- # Use double underscore prefix for better encapsulation,
- # making this attribute harder to access from outside the class.
- __value: Segment | None
-
- def __init__(self, *args, **kwargs):
- """
- The constructor of `WorkflowDraftVariable` is not intended for
- direct use outside this file. Its solo purpose is setup private state
- used by the model instance.
-
- Please use the factory methods
- (`new_conversation_variable`, `new_sys_variable`, `new_node_variable`)
- defined below to create instances of this class.
- """
- super().__init__(*args, **kwargs)
- self.__value = None
-
- @orm.reconstructor
- def _init_on_load(self):
- self.__value = None
-
- def get_selector(self) -> list[str]:
- selector = json.loads(self.selector)
- if not isinstance(selector, list):
- _logger.error(
- "invalid selector loaded from database, type=%s, value=%s",
- type(selector),
- self.selector,
- )
- raise ValueError("invalid selector.")
- return selector
-
- def _set_selector(self, value: list[str]):
- self.selector = json.dumps(value)
-
- def _loads_value(self) -> Segment:
- value = json.loads(self.value)
- return self.build_segment_with_type(self.value_type, value)
-
- @staticmethod
- def rebuild_file_types(value: Any) -> Any:
- # NOTE(QuantumGhost): Temporary workaround for structured data handling.
- # By this point, `output` has been converted to dict by
- # `WorkflowEntry.handle_special_values`, so we need to
- # reconstruct File objects from their serialized form
- # to maintain proper variable saving behavior.
- #
- # Ideally, we should work with structured data objects directly
- # rather than their serialized forms.
- # However, multiple components in the codebase depend on
- # `WorkflowEntry.handle_special_values`, making a comprehensive migration challenging.
- if isinstance(value, dict):
- if not maybe_file_object(value):
- return value
- return File.model_validate(value)
- elif isinstance(value, list) and value:
- first = value[0]
- if not maybe_file_object(first):
- return value
- return [File.model_validate(i) for i in value]
- else:
- return value
-
- @classmethod
- def build_segment_with_type(cls, segment_type: SegmentType, value: Any) -> Segment:
- # Extends `variable_factory.build_segment_with_type` functionality by
- # reconstructing `FileSegment`` or `ArrayFileSegment`` objects from
- # their serialized dictionary or list representations, respectively.
- if segment_type == SegmentType.FILE:
- if isinstance(value, File):
- return build_segment_with_type(segment_type, value)
- elif isinstance(value, dict):
- file = cls.rebuild_file_types(value)
- return build_segment_with_type(segment_type, file)
- else:
- raise TypeMismatchError(f"expected dict or File for FileSegment, got {type(value)}")
- if segment_type == SegmentType.ARRAY_FILE:
- if not isinstance(value, list):
- raise TypeMismatchError(f"expected list for ArrayFileSegment, got {type(value)}")
- file_list = cls.rebuild_file_types(value)
- return build_segment_with_type(segment_type=segment_type, value=file_list)
-
- return build_segment_with_type(segment_type=segment_type, value=value)
-
- def get_value(self) -> Segment:
- """Decode the serialized value into its corresponding `Segment` object.
-
- This method caches the result, so repeated calls will return the same
- object instance without re-parsing the serialized data.
-
- If you need to modify the returned `Segment`, use `value.model_copy()`
- to create a copy first to avoid affecting the cached instance.
-
- For more information about the caching mechanism, see the documentation
- of the `__value` field.
-
- Returns:
- Segment: The deserialized value as a Segment object.
- """
-
- if self.__value is not None:
- return self.__value
- value = self._loads_value()
- self.__value = value
- return value
-
- def set_name(self, name: str):
- self.name = name
- self._set_selector([self.node_id, name])
-
- def set_value(self, value: Segment):
- """Updates the `value` and corresponding `value_type` fields in the database model.
-
- This method also stores the provided Segment object in the deserialized cache
- without creating a copy, allowing for efficient value access.
-
- Args:
- value: The Segment object to store as the variable's value.
- """
- self.__value = value
- self.value = json.dumps(value, cls=variable_utils.SegmentJSONEncoder)
- self.value_type = value.value_type
-
- def get_node_id(self) -> str | None:
- if self.get_variable_type() == DraftVariableType.NODE:
- return self.node_id
- else:
- return None
-
- def get_variable_type(self) -> DraftVariableType:
- match self.node_id:
- case DraftVariableType.CONVERSATION:
- return DraftVariableType.CONVERSATION
- case DraftVariableType.SYS:
- return DraftVariableType.SYS
- case _:
- return DraftVariableType.NODE
-
- @classmethod
- def _new(
- cls,
- *,
- app_id: str,
- node_id: str,
- name: str,
- value: Segment,
- node_execution_id: str | None,
- description: str = "",
- ) -> "WorkflowDraftVariable":
- variable = WorkflowDraftVariable()
- variable.created_at = _naive_utc_datetime()
- variable.updated_at = _naive_utc_datetime()
- variable.description = description
- variable.app_id = app_id
- variable.node_id = node_id
- variable.name = name
- variable.set_value(value)
- variable._set_selector(list(variable_utils.to_selector(node_id, name)))
- variable.node_execution_id = node_execution_id
- return variable
-
- @classmethod
- def new_conversation_variable(
- cls,
- *,
- app_id: str,
- name: str,
- value: Segment,
- description: str = "",
- ) -> "WorkflowDraftVariable":
- variable = cls._new(
- app_id=app_id,
- node_id=CONVERSATION_VARIABLE_NODE_ID,
- name=name,
- value=value,
- description=description,
- node_execution_id=None,
- )
- variable.editable = True
- return variable
-
- @classmethod
- def new_sys_variable(
- cls,
- *,
- app_id: str,
- name: str,
- value: Segment,
- node_execution_id: str,
- editable: bool = False,
- ) -> "WorkflowDraftVariable":
- variable = cls._new(
- app_id=app_id,
- node_id=SYSTEM_VARIABLE_NODE_ID,
- name=name,
- node_execution_id=node_execution_id,
- value=value,
- )
- variable.editable = editable
- return variable
-
- @classmethod
- def new_node_variable(
- cls,
- *,
- app_id: str,
- node_id: str,
- name: str,
- value: Segment,
- node_execution_id: str,
- visible: bool = True,
- editable: bool = True,
- ) -> "WorkflowDraftVariable":
- variable = cls._new(
- app_id=app_id,
- node_id=node_id,
- name=name,
- node_execution_id=node_execution_id,
- value=value,
- )
- variable.visible = visible
- variable.editable = editable
- return variable
-
- @property
- def edited(self):
- return self.last_edited_at is not None
-
-
- def is_system_variable_editable(name: str) -> bool:
- return name in _EDITABLE_SYSTEM_VARIABLE
|