Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

clean_document_task.py 3.5KB

pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
pirms 2 gadiem
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. import logging
  2. import time
  3. from typing import Optional
  4. import click
  5. from celery import shared_task
  6. from sqlalchemy import select
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from core.tools.utils.web_reader_tool import get_image_upload_file_ids
  9. from extensions.ext_database import db
  10. from extensions.ext_storage import storage
  11. from models.dataset import Dataset, DatasetMetadataBinding, DocumentSegment
  12. from models.model import UploadFile
  13. logger = logging.getLogger(__name__)
  14. @shared_task(queue="dataset")
  15. def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: Optional[str]):
  16. """
  17. Clean document when document deleted.
  18. :param document_id: document id
  19. :param dataset_id: dataset id
  20. :param doc_form: doc_form
  21. :param file_id: file id
  22. Usage: clean_document_task.delay(document_id, dataset_id)
  23. """
  24. logger.info(click.style(f"Start clean document when document deleted: {document_id}", fg="green"))
  25. start_at = time.perf_counter()
  26. try:
  27. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  28. if not dataset:
  29. raise Exception("Document has no dataset")
  30. segments = db.session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
  31. # check segment is exist
  32. if segments:
  33. index_node_ids = [segment.index_node_id for segment in segments]
  34. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  35. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  36. for segment in segments:
  37. image_upload_file_ids = get_image_upload_file_ids(segment.content)
  38. for upload_file_id in image_upload_file_ids:
  39. image_file = db.session.query(UploadFile).where(UploadFile.id == upload_file_id).first()
  40. if image_file is None:
  41. continue
  42. try:
  43. storage.delete(image_file.key)
  44. except Exception:
  45. logger.exception(
  46. "Delete image_files failed when storage deleted, \
  47. image_upload_file_is: %s",
  48. upload_file_id,
  49. )
  50. db.session.delete(image_file)
  51. db.session.delete(segment)
  52. db.session.commit()
  53. if file_id:
  54. file = db.session.query(UploadFile).where(UploadFile.id == file_id).first()
  55. if file:
  56. try:
  57. storage.delete(file.key)
  58. except Exception:
  59. logger.exception("Delete file failed when document deleted, file_id: %s", file_id)
  60. db.session.delete(file)
  61. db.session.commit()
  62. # delete dataset metadata binding
  63. db.session.query(DatasetMetadataBinding).where(
  64. DatasetMetadataBinding.dataset_id == dataset_id,
  65. DatasetMetadataBinding.document_id == document_id,
  66. ).delete()
  67. db.session.commit()
  68. end_at = time.perf_counter()
  69. logger.info(
  70. click.style(
  71. f"Cleaned document when document deleted: {document_id} latency: {end_at - start_at}",
  72. fg="green",
  73. )
  74. )
  75. except Exception:
  76. logger.exception("Cleaned document when document deleted failed")
  77. finally:
  78. db.session.close()