| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | 
                        - import logging
 - import time
 - from typing import List
 - 
 - import numpy as np
 - from flask import current_app
 - from langchain.embeddings.base import Embeddings
 - from langchain.schema import Document
 - from sklearn.manifold import TSNE
 - 
 - from core.embedding.cached_embedding import CacheEmbedding
 - from core.index.vector_index.vector_index import VectorIndex
 - from core.model_providers.model_factory import ModelFactory
 - from extensions.ext_database import db
 - from models.account import Account
 - from models.dataset import Dataset, DocumentSegment, DatasetQuery
 - 
 - 
 - class HitTestingService:
 -     @classmethod
 -     def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
 -         if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 -             return {
 -                 "query": {
 -                     "content": query,
 -                     "tsne_position": {'x': 0, 'y': 0},
 -                 },
 -                 "records": []
 -             }
 - 
 -         embedding_model = ModelFactory.get_embedding_model(
 -             tenant_id=dataset.tenant_id,
 -             model_provider_name=dataset.embedding_model_provider,
 -             model_name=dataset.embedding_model
 -         )
 - 
 -         embeddings = CacheEmbedding(embedding_model)
 - 
 -         vector_index = VectorIndex(
 -             dataset=dataset,
 -             config=current_app.config,
 -             embeddings=embeddings
 -         )
 - 
 -         start = time.perf_counter()
 -         documents = vector_index.search(
 -             query,
 -             search_type='similarity_score_threshold',
 -             search_kwargs={
 -                 'k': 10,
 -                 'filter': {
 -                     'group_id': [dataset.id]
 -                 }
 -             }
 -         )
 -         end = time.perf_counter()
 -         logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 - 
 -         dataset_query = DatasetQuery(
 -             dataset_id=dataset.id,
 -             content=query,
 -             source='hit_testing',
 -             created_by_role='account',
 -             created_by=account.id
 -         )
 - 
 -         db.session.add(dataset_query)
 -         db.session.commit()
 - 
 -         return cls.compact_retrieve_response(dataset, embeddings, query, documents)
 - 
 -     @classmethod
 -     def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
 -         text_embeddings = [
 -             embeddings.embed_query(query)
 -         ]
 - 
 -         text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
 - 
 -         tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
 - 
 -         query_position = tsne_position_data.pop(0)
 - 
 -         i = 0
 -         records = []
 -         for document in documents:
 -             index_node_id = document.metadata['doc_id']
 - 
 -             segment = db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.dataset_id == dataset.id,
 -                 DocumentSegment.enabled == True,
 -                 DocumentSegment.status == 'completed',
 -                 DocumentSegment.index_node_id == index_node_id
 -             ).first()
 - 
 -             if not segment:
 -                 i += 1
 -                 continue
 - 
 -             record = {
 -                 "segment": segment,
 -                 "score": document.metadata['score'],
 -                 "tsne_position": tsne_position_data[i]
 -             }
 - 
 -             records.append(record)
 - 
 -             i += 1
 - 
 -         return {
 -             "query": {
 -                 "content": query,
 -                 "tsne_position": query_position,
 -             },
 -             "records": records
 -         }
 - 
 -     @classmethod
 -     def get_tsne_positions_from_embeddings(cls, embeddings: list):
 -         embedding_length = len(embeddings)
 -         if embedding_length <= 1:
 -             return [{'x': 0, 'y': 0}]
 - 
 -         concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
 -         # concatenate_data = np.concatenate(embeddings)
 - 
 -         perplexity = embedding_length / 2 + 1
 -         if perplexity >= embedding_length:
 -             perplexity = max(embedding_length - 1, 1)
 - 
 -         tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 -         data_tsne = tsne.fit_transform(concatenate_data)
 - 
 -         tsne_position_data = []
 -         for i in range(len(data_tsne)):
 -             tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 - 
 -         return tsne_position_data
 
 
  |